
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3748273.3749198
.

.

RESEARCH-ARTICLE

LAPS: Joint Load Balancing and Congestion Control on Unequal-cost
Multi-path Data Center Networks

YING WAN, Southeast University, Nanjing, Jiangsu, China
.

HAOYU SONG, Futurewei Technologies, Inc., Santa Clara, CA, United States
.

YU JIA, China Mobile Communications, Beijing, China
.

YUNHUI YANG, China Mobile Communications, Beijing, China
.

TAO HUANG, Purple Mountain Laboratory, Nanjing, Jiangsu, China
.

ZHIKANG CHEN, Tsinghua University, Beijing, China
.

.

.

Open Access Support provided by:
.

China Mobile Communications
.

Tsinghua University
.

Southeast University
.

Purple Mountain Laboratory
.

Futurewei Technologies, Inc.
.

PDF Download
3748273.3749198.pdf
17 December 2025
Total Citations: 0
Total Downloads: 202
.

.

Published: 08 September 2025
.

.

Citation in BibTeX format
.

.

SIGCOMM '25: ACM SIGCOMM 2025
Conference
September 8 - 11, 2025
Coimbra, Portugal
.

.

Conference Sponsors:
SIGCOMM

NAIC '25: Proceedings of the 2nd Workshop on Networks for AI Computing (September 2025)
hps://doi.org/10.1145/3748273.3749198

ISBN: 9798400720826

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3748273.3749198
https://dl.acm.org/doi/10.1145/3748273.3749198
https://dl.acm.org/doi/10.1145/contrib-99661683194
https://dl.acm.org/doi/10.1145/institution-60005244
https://dl.acm.org/doi/10.1145/contrib-81442594000
https://dl.acm.org/doi/10.1145/institution-60121281
https://dl.acm.org/doi/10.1145/contrib-99661523513
https://dl.acm.org/doi/10.1145/institution-60019764
https://dl.acm.org/doi/10.1145/contrib-99661683431
https://dl.acm.org/doi/10.1145/institution-60019764
https://dl.acm.org/doi/10.1145/contrib-99661681474
https://dl.acm.org/doi/10.1145/institution-60278946
https://dl.acm.org/doi/10.1145/contrib-99660990277
https://dl.acm.org/doi/10.1145/institution-60025278
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60019764
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/institution-60005244
https://dl.acm.org/doi/10.1145/institution-60278946
https://dl.acm.org/doi/10.1145/institution-60121281
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3748273.3749198&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/comm
https://dl.acm.org/conference/comm
https://dl.acm.org/sig/sigcomm
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3748273.3749198&domain=pdf&date_stamp=2025-09-08

LAPS: Joint Load Balancing and Congestion Control on
Unequal-cost Multi-path Data Center Networks

Ying Wan
Southeast University

Nanjing, China

Haoyu Song∗

Futurewei Technologies
Santa Clara, USA

Yu Jia
China Mobile (Suzhou) Software

Technology
Suzhou, China

Yunhui Yang
China Mobile (Suzhou) Software

Technology
Suzhou, China

Tao Huang
Purple Mountain Laboratories

Nanjing, China

Zhikang Chen
Tsinghua University

Beijing, China

ABSTRACT

The assumption of equal-cost paths no longer holds for newer data

center network topologies catering for HPC/AI workloads, chal-

lenging both load balancing and congestion control. The existing

load-balancing schemes, including random packet spraying, fail to

adapt to such networks. In this paper, we propose LAPS, a simple

latency-aware packet spraying scheme, to achieve joint load bal-

ancing and congestion control regardless of network topology and

traffic pattern. As a coherent load-balancing and congestion-control

solution, LAPS manages the packet sending rate and distribution si-

multaneously based on real-time path latency. It adapts to both TCP

and RoCE-based transport protocols and can be deployed on Smart-

NICs at a low implementation cost. Evaluations show that LAPS

consistently outperforms the other load-balancing and congestion-

control schemes in unequal-cost multi-path topologies for HPC/AI

workloads.

CCS CONCEPTS

• Networks→ Network protocols.

KEYWORDS

Data center network, Load balancing, Congestion control, Unequal-

cost multi-path, Packet spraying

ACM Reference Format:

Ying Wan, Haoyu Song, Yu Jia, Yunhui Yang, Tao Huang, and Zhikang Chen.

2025. LAPS: Joint Load Balancing and Congestion Control on Unequal-cost

Multi-path Data Center Networks. In 2nd Workshop on Networks for AI

Computing (NAIC ’25), September 8–11, 2025, Coimbra, Portugal. ACM, New

York, NY, USA, 8 pages. https://doi.org/10.1145/3748273.3749198

∗Haoyu Song is the corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

NAIC ’25, September 8–11, 2025, Coimbra, Portugal

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-2082-6/2025/09
https://doi.org/10.1145/3748273.3749198

1 INTRODUCTION

As the core infrastructure, data center supports large AI model train-

ing/inference and HPC applications. Data Center Network (DCN)

provides the critical communication support for distributed comput-

ing nodes. In large model training, huge amounts of intermediate

data are exchanged frequently, and a slowdown of any flow hurts

the collective communication efficiency. The multi-path opportu-

nity in data center networks must be exploited in conjunction with

efficient end-to-end flow congestion control to fully utilize the

available network bandwidth and avoid creating hot spots.

Load-Balancing (LB): Many multi-path LB schemes have been

proposed and some are widely deployed (e.g., ECMP [1] and Flowlet

[2]). Most assume equal-cost paths (e.g., Fat-Tree [3] and Spine-

Leaf [4]), aiming to distribute the traffic as evenly as possible with

granularity from flow [1] to flowlet [2] to flowcell [5] to packet [6].

The AI workloads exhibit several distinct traffic characteris-

tics [7–9]: while multiple jobs run in parallel, each job produces

a relatively small number of huge, concurrent, and intermittent

flows. The low flow entropy renders the flow-based LB ineffective

and the bursty data hardly generates any flowlets. No wonder Ultra

Ethernet Consortium (UEC), dedicated for Ethernet-based AI and

HPC optimization, resorts to packet spraying as the default LB

scheme [10].

The current packet spraying schemes assume equal-cost paths

too. However, the path asymmetry in bandwidth or length can

lead to significant load-unbalancing. The static weighted spraying

cannot solve the problem due to path/link diversity and traffic

dynamics (e.g., a path/link may present a fast-changing weight for

each packet).

Data centers for AI and HPC often employ unconventional net-

work topologies that manifest the problem. First, switchless topolo-

gies (e.g. Torus [11]) provide multiple paths between each pair of

nodes, but the time-variant traffic makes the paths with the same

length effectively unequal, let alone the longer detours. Second,

high-radix, low-diameter networks (e.g., Dragonfly [12] and UB-

Mesh [13]) require non-minimal adaptive routing to access the

path diversity. Third, the GPU/TPU clusters often adopt hetero-

geneous interconnection technologies for intra-cluster scale-up

network (e.g., NVLink [14] and UAL [15]) and inter-cluster scale-

out network (e.g., IB [16] and UEC). In each case above, LB faces

the unequal-cost multi-path problem which is challenging for the

packet-spraying-based schemes in particular.

11

G3

Group Switch Host

Global link Local link

S9
18

19
S9

18

19

S10
20

21
S10

20

21

S11
22

23
S11

22

23

S12
24

25
S12

24

25

(a) Dragonfly.

GPU

N1 N4

R1 R2 R3 R4

1 2 3 4 16151413

 Rail Switch Nvlink Switch

Scale-up link Scale-out link

Cluster 1 Cluster 4

(b) Rail.

Figure 1: Typical AI DCN topologies.

Congestion-Control (CC): LB and CC are used to be considered

orthogonal for network performance optimization. However, in our

circumstance, they are entangled and should be considered jointly

for the following reasons.

First, conventional DCN CC algorithms (e.g., DCTCP [17] and

DCQCN [18]) usually take ECN and packet drop as congestion sig-

nals. Multi-path packet spraying renders such signals unreliable and

less meaningful. Second, the widely used RoCE transport requires

rigid packet delivery ordering in each flow. Any out-of-order (OOO)

packet delivery triggers an expensive Go-Back-N retransmission

process. Unfortunately, packet spraying makes OOO unavoidable.

Although moderate OOO can be tolerated by adopting certain tech-

niques [6, 19–21], packet spraying on unequal-cost paths can lead

to an excessive OOO rate. Third, multi-path LB is impotent to deal

with incast happening at the last hops. The source node cannot

differentiate the ECN generated by incast or a node on the path.

Our goal is to enable effective packet spraying to achieve global LB

and end-to-end flow CC on arbitrary network topologies and traffic

patterns.We believe that the link bandwidth, path length (e.g., hops),

and local congestion status (e.g., queue depth) are not effective path

cost metrics. Instead, the real-time end-to-end one-way path latency

should be the deterministic factor to choose a packet’s forwarding

path, which consists of all the other factors. Intuitively, packets

should always be sprayed on one or more paths exhibiting the

smallest latencies at the moment. Meanwhile, the path latency can

also serve as a more indicative congestion signal: as long as some

candidate paths present low latencies, the flow can continue to send

with increasing rate; only when all the paths present higher than

expected latency, which is likely caused by incast, should the flow

reduce its rate.

A NIC-based solution is ideal to realize the above vision for the

following reasons: (1) it allows the complete coverage of end-to-end

paths and joint consideration of LB and CC; (2) it is applicable to

all network topologies including the switchless ones; (3) it can take

advantage of the programmable SmartNIC to offload algorithms,

avoiding the scalability concern and the reliance on discontinued

programmable switches. However, several technical hurdles need

to be overcome. First, the host needs to compute and maintain

the candidate paths for each flow. Second, the network needs to

sense the real-time path latency to make timely packet spraying

decisions. Third, we need an efficient method to direct packets to

follow specific end-to-end paths. Fourth, we need a new algorithm

to handle latency-based congestion signals, OOO, and lost packet

retransmission. To this end, we propose Latency-Aware Packet

Spraying (LAPS).

The remainder of the paper is organized as follows. Sec. 2 pro-

vides the background. Sec. 3 describes the architecture and imple-

mentation of LAPS. Sec. 4 presents the performance evaluation.

Sec. 5 summarizes the related work. Finally, Sec. 6 concludes the

paper.

2 BACKGROUND

When moving packets from A to B with multiple paths, the sensible

choice is to take the fastest way if the delay information can be

acquired in advance, and only if all the paths are congested, shall the

sending rate be slowed down to avoidworsening the situation. LAPS

sticks to this first principle to design its LB and CC mechanisms

jointly.

Unequal-cost Multi-path. Fig.1 illustrates a few typical net-

work topologies in today’s AI DCN which features unequal-cost

multi-path. The switches and servers in Fig. 1(a) are divided into

nine identical groups. From S5 to S11, the network provides three

3-hop paths, 12 4-hop paths, and many other longer paths. In the

mixed scale-up and scale-out network in Fig. 1(b), to reach a node

in another cluster, a packet can be routed to any node in the same

cluster first before being forwarded to the scale-out network, result-

ing in multiple unequal-cost paths. Since each link is involved in

multiple paths for multiple transient flows, the link load is difficult

to predict, and so is the path cost.

Path Finding. Although the choices are plethora, it is unneces-

sary and uneconomic to use all possible paths for packet forwarding.

Usually, it is sufficient to only consider the top-𝑘 paths in terms of

path cost. The choice of 𝑘 is subject to the network type and scale.

In Fig. 1(a), the 3-hop and 4-hop paths (15 in total) provide a good

balance between path diversity and maintenance cost. The choice

of 𝑘 may also depend on the adjacency degree of two nodes. For ex-

ample, in a Torus network, more paths should be considered when

two nodes are further apart. The 𝑘-shortest-path algorithm [22]

can be used to find the candidate paths.

In-band Network Telemetry (INT). INT [23] adds a custom

header to packets to instruct network nodes to collect specific data

for network performance monitoring. INT has been enabled on

commercial switches (e.g., Broadcom [24]). In contrast to out-of-

band activemeasurements, INT has low overhead (themeasurement

data is carried in application packets), low feedback latency (the

measurements can be refreshed in one RTT), and high accuracy (it

reflects the real experience of the application traffic). LAPS only

needs the one-way path latency, so we use INT to collect only the

packet timestamp at sender nodes.

Source Routing (SR). LAPS balances the traffic load at path

level, requiring the candidate paths to be explicitly maintained at a

source node and each packet pinned on a path. SR is thus a natural

choice to support non-minimal adaptive routing in unequal-cost

multi-path networks. To forward a packet to another node, the head

node first figures out the candidate paths based on the packet’s

destination address, and then inserts an SR header according to the

path selection result.

12

Source SmartNIC

Destination
SmartNIC

Latency-Weighted
Packet Spraying

Active Latency
Probing

Active Latency
Probing

Buffering &
Reordering

data

Forwarding path
Outdated path

ack

AIMD Congestion Control
lookup

update

path latency

path latency

signal

retransmitted segments
MAU tables

check Ring buffer

Loss & Timeout
Retransmission

ack

signal

data

Figure 2: The architecture of LAPS.

Multi-path Packet Spraying. We consider the path latency

as the dynamic path cost and use the general Softmax function to

model the packet spraying strategy in Equation 1.

𝑃 (𝑑𝑖) =
𝑒−𝛽𝑑𝑖

∑𝑘
𝑗=1 𝑒

−𝛽𝑑 𝑗
,∀𝑖 ∈ [1, ..., 𝑘] (1)

In the equation, 𝑑𝑖 is path 𝑖’s measured latency, and 𝑃 (𝑑𝑖) is the
probability that 𝑖 is selected to send a packet. The non-negative

real-value parameter 𝛽 is used to adjust the probability distribution.

When 𝛽 = 0, the strategy degenerates into Random Packet Spraying

(RPS) [6]: the packets are evenly distributed to all candidate paths.

Clearly, this will lead to serious load imbalance. On the other hand,

increasing 𝛽 will make packets concentrate more toward the paths

of the smallest latencies. When 𝛽 is large enough, the Softmax

function degenerates into an ArgMax function and only the path(s)

with the minimum latency will be chosen. It is interesting to find

the optimal 𝛽 for the best overall performance.

CC & Lost Recovery. Since packets are always sprayed on the

fastest path(s), low latencies on these paths imply that the flow

sending rate can be increased. Only when all the paths exhibit an

abnormal latency should the flow rate be reduced. Latency as the

congestion signal is more expressive and stable than ECN for multi-

path packet spraying. However, we must differentiate OOO from

packet drop events for efficient retransmission. Inherently, packets

distributed on the same path are delivered in order if not lost, and

their ACKs should be received in order if they also follow the

same path. Hence, if the ACKs received for a path skip an expected

sequence number, it indicates that the corresponding packet is lost,

and a retransmission can be issued immediately.

3 ARCHITECTURE & IMPLEMENTATION

3.1 Architecture Overview

Fig. 2 illustrates the architecture of LAPS. The source node sprays

packets across selected paths with a higher probability towards

paths with lower latency. Intermediate switches forward the packets

according to the SR header. The destination node acknowledges the

received data segment by sending ACKs along the reversed path

acquired from the SR header. The ACK also embeds the receiver

timestamp for the source to refresh its path latency. At the source

node, if the latency of a path is outdated, which may be due to the

lack of packets sent on it or returned ACKs for a while, it sends

a probe packet along that path to obtain its latency. The source

node adjusts a flow’s sending rate using the “Additive Increase and

Multiplicative Decrease” (AIMD) approach based on the latencies

of all its candidate paths for CC. The source node detects packet

loss through ACKs and performs selective retransmissions. If no

ACK is received within a timeout period, a retransmission of the

missing packets is triggered.

3.2 Packet Format

To support the above functions, LAPS embeds a custom header in

each packet, which consists of three parts:

• Type: The 1-bit type, if set, indicates that the corresponding

data/ACK packet is a probe rather than a normal one.

• INT: The INT fields contain a 16-bit pid and a 48-bit time. For a
data packet, pid and time record the forwarding path ID and the

transmission timestamp1, respectively. For an ACK packet, pid
is copied from the corresponding data packet, and time carries
the calculated one-way path latency.

• SR: The field contains a series of 32-bit node IDs for the forward-

ing path, as well as some other facilitating data such as path

length and node pointer. A path can be specified with a few key

anchor points if the shortest path between adjacent anchor points

is assumed.

A path can usually be specified by up to two or three anchor

nodes, so the additional overhead is about 20 bytes per packet,

accounting for only 1.3% of 1500-byte IP packets.

3.3 Match-Action Tables

LAPS maintains and uses two tables shown in Fig. 3:

• Path Search Table (PST): PST uses the packet’s destination

address as the key for Exact Matching (EM) to obtain the IDs of

candidate forwarding paths.

• Path Information Table (PIT): Indexed by path ID, PIT main-

tains the path information. idleVal represents the baseline la-
tency of a path. time and realVal are the latest measurement

time and the measured latency, respectively. anchors indicates
the anchor points defining the path.

Figure 3: Two EM match tables in LAPS.

PST contains at most 𝑛-1 entries for a network of 𝑛 hosts. In

addition, PIT consumes 𝑂 (𝑛𝑘) entries to store path information,

where 𝑘 is the number of paths between a pair of hosts. Modern

NICs can easily support these needs.

1Although using timestamps on different nodes for latency calculation, LAPS does not
require clock synchronization between the nodes, because LAPS only compares path
latencies between each pair of nodes, and their offsets to the real time only produce a
fixed error which does not affect the relative comparison result.

13

3.4 Latency Measurement

LAPS measures path latency with two methods: (1) Upon receiving

each normal ACK, the sender updates the entry PIT[pid]; (2) Ac-
tive Probing (AP) is used to refresh the entry PIT[pid] if it is not
updated for more than 2·realVal. When waiting for the AP ACK,

PIT[pid].time is set to Now(), and PIT[pid].realVal is doubled to
reduce the probing frequency and exclude the path from forwarding

packets.

3.5 Latency-Weighted Packet Spraying

To send a data packet, LAPS looks up PST and PIT to determine

the latencies of all candidate paths. Then, based on the probabili-

ties calculated by Equation 1, the packet is distributed to a path2.

Meanwhile, AP is triggered if necessary.

When the receiver needs to send an ACK for a packet, it simply

uses the reversed SR path due to the following rationale: (1) it

avoids path lookups at the receiver; (2) the small ACK packets have

little impact on load imbalance, and the network nodes can give

ACKs higher priority than data packets to avoid queuing delay;

(3) it enables efficient loss detection and fast retransmission (see

Sec. 3.7).

3.6 Congestion Detection and Control

LAPS adjusts the sending rate based on real-time path latency.

Normally, the biased traffic distribution mitigates the congestion on

paths with longer latencies without reducing the overall flow rate.

When traffic is heavy, or during receiver incast, the latencies of all

paths for a flow converge to the largest baseline latency T. At this
point, it is no longer possible to mitigate congestion by adjusting

traffic distribution. Instead, LAPS starts to reduce the flow sending

rate.

LAPS uses AIMD to adjust the flow rate. When receiving an

ACK, the sender first updates the corresponding PIT entry. Then,
it detects if all the valid paths have a higher latency than T. If true,
the sender sets the flow’s expected rate expRate to the current rate
curRate and halves the curRate; otherwise, curRate is linearly

increased by expRate−curRate
2 . The rate adjustment is only allowed

once in 2T to prevent over-adjustment before the effect is perceived

by the sender.

To find the maximum available bandwidth, expRate will be dou-
bled after N consecutive linear increases. This Hyper Rate Increase

(HAI) phase continues as long as any path has a latency lower than

T. Otherwise, HAI is terminated.

3.7 Loss & Timeout Retransmission

LAPS enforces an ACK packet to use the reverse path of the corre-

sponding data packet. Therefore, the OOO ACKs on a path imply

packet loss, so the sender can immediately retransmit the deemed

lost packets. To achieve this, LAPS records the sequence numbers

of data packets sent along each path that have not yet been ac-

knowledged. Upon receiving a data packet pkt, the receiver sends
an ACK to selectively acknowledge it. The sender compares the

unacknowledged data segments sent along this path until it finds

2The default value of 𝛽 is empirically set to be 1. Methods for automatically converging
𝛽 to the optimal value under varying network conditions is left for future work. The
other settings can be found at https://github.com/wany16/Laps-ns3.

pkt. Consequently, all data segments before pkt are lost. LAPS will
immediately retransmit these lost data segments in sequence before

sending new data.

3.8 Implementation

To verify the feasibility of LAPS on an FPGA-based NIC, we imple-

ment it on the Xilinx Alveo U280 Accelerator Card by leveraging

the open-source FastRMT [25] and Corundum [26]. As shown in

Fig. 4, LAPS is realized as a pipeline composed of a series of Match-

Action Units (MAUs) which fit in the classic RMT model [27, 28].

The design (𝑖) decomposes PIT into 32 sub-tables and look up the

candidate paths in parallel, (𝑖𝑖) transforms the path traversal pro-

cess (e.g., calculating path weights and identifying outdated paths)

into parallel circuits, and (𝑖𝑖𝑖) converts the Softmax calculation into

lookup tables, additions, and divisions [29].

PST PIT1 PIT2 PIT32...

PIT Tables

PIT1 PIT2 PIT32...

PIT Tables

EXP PART
SUM DIV RAND

SEL

Softmax
EXP PART

SUM DIV RAND
SEL

Softmax

nxtDec
nxtInc incStage expRate

curRate

Rate Limiting Tables
nxtDec
nxtInc incStage expRate

curRate

Rate Limiting Tables
MIN
MAX

Figure 4: Pipelined implementation of LAPS.

4 EVALUATION

We conduct extensive simulations using the network simulator

NS3 [30] to compare LAPS with flow-based LB (ECMP, PLB [31]),

Flowlet-based LB (LetFlow, CONGA), andConWeave [32] by reusing

implementations in [32–35], with parameters set to default values

as specified in [33–35] unless otherwise stated.

4.1 Testbed

Topologies: We run simulations on two typical DCN topologies:

Dragonfly (Fig. 1(a)) and Rail (Fig. 1(b)). Dragonfly comprises nine

groups with 36 switches and 144 servers, and Rail comprises eight

clusters with eight Rail switches, eight intra-node Nvlink switches,

and 64 servers. In Dragonfly, not only the minimal path but also

a set of sub-optimal paths are considered: for inter-group traffic,

each group is used as a midpoint to bridge the two sections of the

shortest paths from the source server and to the destination server;

for intra-group traffic, each switch of the same group is used as a

midpoint. Thus, there are three and eight candidate paths for intra-

group and inter-group communication, respectively. In Rail, GPUs

within the same cluster communicate directly through the Nvlink

switch that connects them. For inter-cluster GPU communication,

the data is routed through all Rail switches. The number of available

paths thus equals the number of Rail switches (8). All the links are

set to 100Gbps.

Workloads: We adopt four representative real-world DCNwork-

loads to generate the test traffic: Data Mining (DM) [36] from Mi-

crosoft, Remote Procedure Call (RPC) [37] from Google, Hadoop

(HDP) from Meta, and Cloud Storage (STR) from Alibaba [38].

They are all heavy-tailed, with the top 5% of flows accounting

for 97.9%, 90.7%, 81.8%, and 77.1% of the total traffic for DM, RPC,

HDP, and STR, respectively. We also test the performance under

14

Figure 5: The FCTs on (Rail, DM, All2all).

Figure 6: The FCTs on (Rail, STR, All2all).

Figure 7: The FCTs on (Dragonfly, RPC, All2all).

Figure 8: The FCTs on (Dragonfly, HDP, All2all).

the distributed training of the large language model LLAMA-2 with

7B parameters [39].

Patterns: We select three representative communication pat-

terns: All2all, AllReduce, andAllScatter. For All2all, the servers/GPUs

send traffic to all the other servers/GPUs; for AllReduce based on

parameter server, all the other servers/GPUs send traffic to one

server/GPU; for AllScatter, one server/GPU sends traffic to all the

other servers/GPUs.

4.2 Simulation Results

Fig. 5∼8 illustrate the FCTs of the LB algorithms under different set-

tings, in which (𝑋,𝑌, 𝑍) indicates the combination of the topology

𝑋 , the workload 𝑌 , and the pattern 𝑍 .
Average FCT. The first subfigures in Fig. 5∼8 illustrate the

average FCT of all flows. LAPS consistently outperforms the other

algorithms in all cases. At 80% load in Fig. 5, LAPS improves the

average FCT by 3.3×, 2.8×, 1.6×, 4.8×, and 6.1× compared to ECMP,

LetFlow, PLB, ConWeave, and CONGA, respectively. Besides, LAPS

exhibits the slowest growth rate in average FCT as the load ratio

increases. As shown in Fig. 5, when the load ratio increases from 50%

to 100%, LAPS only increases the average FCT by 0.64ms, whereas

ECMP, LetFlow, PLB, ConWeave, and CONGA increase it by 4.6,

4.3, 1.1, 5.2, and 5.6ms, respectively.

P99 FCT. The second subfigures in Fig. 5∼8 illustrate the FCT of

the 99th percentile flow, which indicates fair treatment of all flows

to meet the QoS of latency-sensitive applications. LAPS achieves

the best and most stable performance across all scenarios. As shown

in Fig. 6, at 80% load in (Rail, STR, All2all) , the P99 FCT of LAPS is

only 0.12ms, while ECMP, LetFlow, PLB, ConWeave, and CONGA

reach 0.67, 0.70, 0.48, 0.80, and 0.85ms, respectively.

Insight. ECMP randomly selects a path for each flow without

considering the inequality of path costs or the significant flow size

differences, which can easily lead to path congestion. ConWeave

uses the destination ToR switch to buffer all packets on the newly

selected path until all packets on the original path are passed, which

puts pressure on the switch’s buffer and delays the arrival of packets

on the new path. CONGA sends flowlets to the least congested

path. However, flowlets are hard to identify in RDMA scenarios.

Consequently, most flows stick to the same path. Similarly, LetFlow

transmits each flow almost entirely along the initially randomly

selected path until completion, resulting in a performance very

close to ECMP. Meanwhile, CONGA presents a severe “herd effect”

that flows tend to rush to the same least congested path to quickly

congest it. The performance of PLB is the closest to that of LAPS.

When congestion is detected and there are no in-flight packets, PLB

switches it to a randomly selected path. Moreover, if a flow detects

congestion for 12 consecutive times without finding a suitable

switching opportunity, it will force the path switching. Therefore,

PLB often requires multiple attempts to find a suitable path.

LLM Training: Table 1 shows the average and P99 FCTs for

different LB schemes during the gradient aggregation (64MB) in

one round of LLAMA distributed training with and without random

packet drops, which involves incast congestion. LAPS outperforms

other algorithms in both average FCT and P99 FCT. For instance,

given no packet drop, LAPS’s P99 FCT is improved by 3.5×, 3.4×,

3.6×, 3.8×, and 1.4× compared to ECMP, LetFlow, PLB, ConWeave,

and CONGA, respectively. Table 1 not only demonstrates LAPS’s

ability to transmit packets along the minimal-cost path but also

highlights its superior rate control capabilities. Table 1 also shows

that only LAPS’s average FCT and P99 FCT are almost unaffected by

random packet loss, which demonstrates that LAPS can distinguish

packet loss from OOO, and enables rapid selective retransmission.

Buffer Size. Fig. 9 shows the statistics of the buffer size in LAPS

due to OOO packets at the receiver for the LLM training on Rail

networks. Although LAPS employs packet spraying, it achieves a

low overall packet reordering ratio. For the AllScatter operations

when no congestion is experienced, only 0.2% of packets are found

to be reordered and the buffer size is only 0.003KB on average. Even

for the AllReduce operations that trigger severe congestion, LAPS

requires buffering fewer than 16 1KB packets on average, with only

less than 4% probability that the buffer size exceeds 30KB. This

indicates that LAPS has low pressure on the receiver’s OOO packet

15

Table 1: FCTs on (Rail, LLM, AllReduce)

Drop ratio 0 0.0001%

Scheme ECMP LetFlow CONGA ConWeave PLB LAPS ECMP LetFlow CONGA ConWeave PLB LAPS

Avg. FCT (ms) 564 553 540 563 211 162 580 578 547 610 219 162

P99 FCT(ms) 617 589 628 659 235 175 645 633 658 757 240 175

Figure 9: The buffer size in LLM training on Rail.

Table 2: Hardware consumption on FPGA

LUT FF CARRY8 BRAM

PST Table 74 177 0 8

PIT Table 2950 2976 0 112

Rate Limiting Tables 3012 3866 119 8

Softmax Function 26949 7938 1752 0

Total
33808

(2.51%)

16711

(0.64%)

1909

(1.17%)

135.5

(6.72%)

buffer and reordering process. Considering the scenarios such as

LLM training for which the number of flows is relatively small, the

current commercial RDMA NICs are sufficient to store and reorder

the OOO packets.

4.3 Hardware Prototype Analysis

We implement a prototype of LAPS using 1,129 lines of code in

Chisel 5.0 (which maps to 5,992 lines of code in SystemVerilog)

on an Alveo U280. The table PST has a size of 1,024 to support

up to 1,024 servers, with each PST entry containing 8 valid pids.
Correspondingly, PIT has a size of 1,024×8=8,192, with each PIT
entry allowing 4 anchors. The rate-limiting module can support

up to 1,024 flows. When evaluating the resource utilization, we

excluded the NIC functions themselves (Xilinx 100G CMAC IP,

schedulers, etc.) and only included the LAPS parsing/deparsing

modules and the processing pipeline. We separately evaluated the

resources consumed by the PST, PIT, rate limiting module, and

Softmax, as shown in Table 2. The synthesis results indicate that

the resource consumption of LAPS on U280 is acceptable, and it is

feasible to deploy LAPS on an FPGA-based SmartNIC.

5 RELATEDWORK

Previous works on multi-path LB are mainly for topologies with

equal-cost paths. The approaches can be classified using the primary

deployment location as the first dimension and the scheduling

granularity as the second dimension.

Switch-based: ECMP and WCMP [40] distribute flows to different

links. Flare [2], LetFlow [41], LocalFlow [42], and BurstBalancer [43]

spray segments of flows (e.g., flowlet) across links. RPS andDrill [44]

spray packets to different links. CONGA [45], Hula [46], and Pro-

teus [33, 47] distribute flowlets or flows according to the RTT or

link utilization.

Controller-based: Hedera [48], Mahout [49], Freeway [50], DR-

Let [51], and Fastpass [52] determine the paths for flows or packets

based on exposed network and application information. Relying on

a central controller, such solutions cannot scale to large networks

and react to micro-bursts [53].

Host-based: MPTCP [54], Flowbender [55], Presto [5], and Clove

[56] modify the transport layer to split a single flow into subflows

for transmission on different paths. PLB [31] changes the flow label

of any congested flow in the hope that the in-network ECMP may

change its path.

To mitigate the packet reordering issue for packet spraying [6],

SRED selectively drops packets that would lead to unequal queue

lengths [57], and QDAPS and QDAPS* [58] ensure a packet has a

longer queuing delay than the previous packet of the same flow.

With added complexity, CAPS [59], HTPC [60], and Corrective [61]

introduce a coding layer and spray the coded packets to address

the reorder problem.

Adaptive routing can be applied to utilize the unequal-cost paths.

UGAL-L [12] always sprays packets to the port with the smallest

queue length. UGAL-G [12] uses the queue length of other switches

and hop count to estimate the path latency. PAR [62] only uses the

minimal path but allows intermediate switches to reroute to avoid

congestion. Q-adaptive [63] adopts reinforcement learning tech-

nique to predict global path conditions based on local information.

DCTCP and DCQCN are widely deployed CC algorithms in DCN.

Many others are used in wide-area networks [64, 65]. CC can be

achieved with or without the assistance of network switches, based

on ECN, RTT, or other signals, and using window or credit-based

mechanisms. In recent years, many improvements to DCTCP and

DCQCN are proposed [38, 66]. However, all these works consider

CC independent of LB, making them ill-suited for unequal-cost

multi-path networks. STrack [67] is a joint LB/CC algorithm for

packet spraying on equal-cost multi-paths using ECN and RTT.

6 CONCLUSION

Designed for AI/HPC workload, LAPS is a joint load-balancing

and congestion-control scheme to support unequal-cost multi-path

packet spraying on arbitrary network topologies and for any traffic

patterns. Although simple, it occupies a unique niche in the wide

spectrum of load-balancing algorithms and reveals the need for

congestion-control adaptation by providing a practical solution

with synergistic benefits.

16

REFERENCES
[1] C Hopps. 2000. RFC2992: Analysis of an Equal-Cost Multi-Path Algorithm. Techni-

cal Report. RFC Editor. https://dl.acm.org/doi/pdf/10.17487/RFC2992
[2] Srikanth Kandula, Dina Katabi, Shantanu Sinha, and Arthur Berger. 2007. Dy-

namic load balancing without packet reordering. ACM SIGCOMM Computer Com-
munication Review 37, 2 (3 2007), 51–62. https://doi.org/10.1145/1232919.1232925

[3] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A scalable,
commodity data center network architecture. In Proceedings of the ACM SIG-
COMM 2008 Conference on Data Communication (SIGCOMM ’08). ACM, New
York, NY, USA, 63–74. https://doi.org/10.1145/1402958.1402967

[4] Mohammad Alizadeh and Tom Edsall. 2013. On the Data Path Performance of
Leaf-Spine Datacenter Fabrics. In 2013 IEEE 21st Annual Symposium on High-
Performance Interconnects. IEEE, San Jose, CA, USA, 71–74. https://doi.org/10.
1109/HOTI.2013.23

[5] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John Carter, and Aditya
Akella. 2015. Presto: Edge-based Load Balancing for Fast Datacenter Networks.
ACM SIGCOMM Computer Communication Review 45, 4 (9 2015), 465–478. https:
//doi.org/10.1145/2829988.2787507

[6] Advait Dixit, Pawan Prakash, Y. Charlie Hu, and Ramana Rao Kompella. 2013.
On the Impact of Packet Spraying in Data Center Networks. In 2013 Proceedings
IEEE INFOCOM. IEEE, Turin, Italy, 2130–2138. https://doi.org/10.1109/INFCOM.
2013.6567015

[7] Wenxue Li, Xiangzhou Liu, Yuxuan Li, Yilun Jin, Han Tian, Zhizhen Zhong,
Guyue Liu, Ying Zhang, and Kai Chen. 2024. Understanding Communication
Characteristics of Distributed Training. In Proceedings of the 8th Asia-Pacific
Workshop on Networking (APNet ’24). Association for Computing Machinery,
New York, NY, USA, 1–8. https://doi.org/10.1145/3663408.3663409

[8] Sudarsanan Rajasekaran, Manya Ghobadi, and Aditya Akella. 2024. CASSINI:
Network-Aware Job Scheduling in Machine Learning Clusters. In 21st USENIX
Symposium on Networked Systems Design and Implementation (NSDI 24). USENIX
Association, Santa Clara, CA, 1403–1420. https://www.usenix.org/conference/
nsdi24/presentation/rajasekaran

[9] Weiyang Wang, Manya Ghobadi, Kayvon Shakeri, Ying Zhang, and Naader
Hasani. 2024. Rail-only: A Low-Cost High-Performance Network for Training
LLMs with Trillion Parameters. (2024). https://arxiv.org/abs/2307.12169

[10] UEC. 2024. UEC Progresses Towards v1.0 Set of Specifications. https:
//ultraethernet.org/uec-progresses-towards-v1-0-set-of-specifications/

[11] Norman P. Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng
Nai, Nishant Patil, Suvinay Subramanian, Andy Swing, Brian Towles, Cliff Young,
Xiang Zhou, Zongwei Zhou, and David Patterson. 2023. TPU v4: An Optically
Reconfigurable Supercomputer for Machine Learning with Hardware Support
for Embeddings. https://arxiv.org/abs/2304.01433

[12] John Kim,Wiliam J. Dally, Steve Scott, and Dennis Abts. 2008. Technology-Driven,
Highly-Scalable Dragonfly Topology. ACM SIGARCH Computer Architecture News
36, 3 (6 2008), 77–88. https://doi.org/10.1145/1394608.1382129

[13] Heng Liao, Bingyang Liu, Xianping Chen, Zhigang Guo, Chuanning Cheng,
Jianbing Wang, Xiangyu Chen, Peng Dong, Rui Meng, Wenjie Liu, Zhe Zhou,
Ziyang Zhang, Yuhang Gai, Cunle Qian, Yi Xiong, Zhongwu Cheng, Jing Xia, Yuli
Ma, Xi Chen,Wenhua Du, Shizhong Xiao, Chungang Li, Yong Qin, Liudong Xiong,
Zhou Yu, Lv Chen, Lei Chen, Buyun Wang, Pei Wu, Junen Gao, Xiaochu Li, Jian
He, Shizhuan Yan, and Bill McColl. 2025. UB-Mesh: a Hierarchically Localized
nD-FullMesh Datacenter Network Architecture. arXiv:2503.20377 [cs.AR] https:
//arxiv.org/abs/2503.20377

[14] Nvidia. 2024. NVLink and NVLink Switch. https://www.nvidia.com/en-us/data-
center/nvlink/

[15] UALink Consortium. 2024. Ultra Accelerator Link. https://www.
ualinkconsortium.org/

[16] IBTA. 2024. InfiniBand Trade Association. https://www.infinibandta.org/
[17] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data center TCP (DCTCP). In Proceedings of the ACM SIGCOMM 2010 Conference.

[18] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion Control for Large-Scale RDMA Deployments. In
Proceedings of the 2015 ACM SIGCOMM Conference.

[19] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang Xiong, Peng Cheng, Jian-
song Zhang, Enhong Chen, and Thomas Moscibroda. 2018. Multi-Path Transport
for RDMA in Datacenters. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18). USENIX Association, Renton, WA, 357–371.
https://www.usenix.org/conference/nsdi18/presentation/lu

[20] Guo Chen, Yuanwei Lu, Bojie Li, Kun Tan, Yongqiang Xiong, Peng Cheng, Jian-
song Zhang, and Thomas Moscibroda. 2019. MP-RDMA: Enabling RDMA With
Multi-Path Transport in Datacenters. IEEE/ACM Transactions on Networking 27,
6 (12 2019), 2308–2323. https://doi.org/10.1109/TNET.2019.2948917

[21] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi, Arvind Kr-
ishnamurthy, Sylvia Ratnasamy, and Scott Shenker. 2018. Revisiting Network
Support for RDMA. In Proceedings of the 2018 Conference of the ACM Special

Interest Group on Data Communication. ACM, New York, NY, USA, 313–326.
https://doi.org/10.1145/3230543.3230557

[22] Jin Yen. 1971. Finding the K Shortest Loopless Paths in a Network. Management
Science 17(11) (1971).

[23] Lizhuang Tan, Wei Su, Wei Zhang, Jianhui Lv, Zhenyi Zhang, Jingying Miao,
Xiaoxi Liu, and Na Li. 2021. In-band Network Telemetry: A Survey. Computer
Networks 186 (2021), 107763. https://doi.org/10.1016/j.comnet.2020.107763

[24] Broadcom. 2017. In-band Telemetry. https://docs.broadcom.com/doc/IBT-PB100
[25] Xiangrui Yang, Lingbin Zeng, Zhongpei Liu, Yingwen Chen, Gaofeng Lv, Cheng

Yang, and Jinshu Su. 2024. FastRMT: A High-Speed Data Plane Programmable
System for Micro-Architecture Innovation. Chinese Journal of Computers 47, 2 (2
2024), 473–490.

[26] Alex Forencich, Alex C. Snoeren, George Porter, and George Papen. 2020. Corun-
dum: An Open-Source 100-Gbps NIC. In 2020 IEEE 28th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM). 38–46.
https://doi.org/10.1109/FCCM48280.2020.00015

[27] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding metamorpho-
sis: Fast programmable match-action processing in hardware for SDN. ACM
SIGCOMM Computer Communication Review 43, 4 (2013), 99–110.

[28] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad
Alizadeh, Hari Balakrishnan, George Varghese, NickMcKeown, and Steve Licking.
2016. Packet transactions: High-level programming for line-rate switches. In
Proceedings of the 2016 ACM SIGCOMM Conference. 15–28.

[29] Qiwei Sun, Zhixiong Di, Zhengyang Lv, Fengli Song, Qianyin Xiang, Quanyuan
Feng, Yibo Fan, Xulin Yu, and Wenqiang Wang. 2018. A High Speed SoftMax
VLSI Architecture Based on Basic-Split. In 2018 14th IEEE International Conference
on Solid-State and Integrated Circuit Technology (ICSICT). 1–3. https://doi.org/10.
1109/ICSICT.2018.8565706

[30] Thomas R Henderson, Mathieu Lacage, George F Riley, Craig Dowell, and Joseph
Kopena. 2008. Network simulations with the ns-3 simulator. SIGCOMM demon-
stration 14, 14 (2008), 527.

[31] Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen Yin, Qiaobin Fu, Gautam
Kumar, Masoud Moshref, Junhua Yan, Van Jacobson, David Wetherall, and Abdul
Kabbani. 2022. PLB: congestion signals are simple and effective for network load
balancing. In Proceedings of the ACM SIGCOMM 2022 Conference (SIGCOMM ’22).
Association for Computing Machinery, New York, NY, USA, 207–218. https:
//doi.org/10.1145/3544216.3544226

[32] Cha Hwan Song, Xin Zhe Khooi, Raj Joshi, Inho Choi, Jialin Li, and Mun Choon
Chan. 2023. Conweave: Network Load Balancing with In-network Reordering
Support for RDMA. In Proceedings of the ACM SIGCOMM 2023 Conference (New
York, NY, USA). ACM, 816–831. https://doi.org/10.1145/3603269.3604849

[33] Junxue Zhang, Wei Bai, and Kai Chen. 2019. Enabling ECN for datacenter
networks with RTT variations. In Proceedings of the 15th International Conference
on Emerging Networking Experiments And Technologies (CoNEXT ’19). Association
for Computing Machinery, New York, NY, USA, 233–245. https://doi.org/10.
1145/3359989.3365426

[34] Hong Zhang, Junxue Zhang, Wei Bai, Kai Chen, and Mosharaf Chowdhury.
2017. Resilient Datacenter Load Balancing in the Wild. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication (SIGCOMM
’17). Association for Computing Machinery, New York, NY, USA, 253–266. https:
//doi.org/10.1145/3098822.3098841

[35] Google. 2024. TCP-PLB Open Source. https://github.com/google/plb?tab=
readme-ov-file

[36] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen Patel, and Sudipta
Sengupta. 2009. VL2: a scalable and flexible data center network. In Proceedings
of the ACM SIGCOMM 2009 Conference on Data Communication (SIGCOMM ’09).
ACM, New York, NY, USA, 51–62. https://doi.org/10.1145/1592568.1592576

[37] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. 2018.
Homa: A Receiver-Driven Low-Latency Transport Protocol Using Network Pri-
orities. In Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM ’18). Association for Computing Machinery,
New York, NY, USA, 221–235. https://doi.org/10.1145/3230543.3230564

[38] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu.
2019. HPCC: High Precision Congestion Control. In Proceedings of the ACM
Special Interest Group on Data Communication (New York, NY, USA). ACM, 44–58.
https://doi.org/10.1145/3341302.3342085

[39] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models.
https://arxiv.org/abs/2302.13971. ArXiv (2023).

[40] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, Leon Poutievski, Arjun
Singh, and Amin Vahdat. 2014. WCMP: weighted cost multipathing for improved
fairness in data centers. In Proceedings of the Ninth European Conference on
Computer Systems (EuroSys ’14). Association for Computing Machinery, New

17

York, NY, USA, 1–4. https://doi.org/10.1145/2592798.2592803
[41] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and Tom Edsall.

2017. Let It Flow: Resilient Asymmetric Load Balancing with Flowlet Switching.
In 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17). USENIX Association, Boston, MA, 407–420. https://www.usenix.org/
conference/nsdi17/technical-sessions/presentation/vanini

[42] Siddhartha Sen, David Shue, Sunghwan Ihm, and Michael J Freedman. 2013.
Scalable, Optimal Flow Routing in Datacenters via Local Link Balancing. In
Proceedings of the Ninth ACM Conference on Emerging Networking Experiments
and Technologies (CoNEXT ’13). Association for Computing Machinery, New York,
NY, USA, 151–162. https://doi.org/10.1145/2535372.2535397

[43] Zirui Liu, Yikai Zhao, Zhuochen Fan, Tong Yang, Xiaodong Li, Ruwen Zhang,
Kaicheng Yang, Zihan Jiang, Zheng Zhong, Yi Huang, Cong Liu, Jing Hu, Gaogang
Xie, and Bin Cui. 2024. BurstBalancer: Do Less, Better Balance for Large-Scale
Data Center Traffic. IEEE Transactions on Parallel and Distributed Systems 35, 6
(2024), 932–949. https://doi.org/10.1109/TPDS.2023.3295454

[44] Soudeh Ghorbani, Zibin Yang, P Brighten Godfrey, Yashar Ganjali, and Amin
Firoozshahian. 2017. DRILL: Micro Load Balancing for Low-latency Data Center
Networks. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM ’17). ACM, New York, NY, USA, 225–238.
https://doi.org/10.1145/3098822.3098839

[45] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-
tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA: Distributed
Congestion-Aware Load Balancing for Datacenters. In Proceedings of the
2014 ACM conference on SIGCOMM. ACM, New York, NY, USA, 503–514.
https://doi.org/10.1145/2619239.2626316

[46] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer
Rexford. 2016. HULA: Scalable Load Balancing Using Programmable Data Planes.
In Proceedings of the Symposium on SDN Research (SOSR ’16). Association for
Computing Machinery, New York, NY, USA, 1. https://doi.org/10.1145/2890955.
2890968

[47] Jinbin Hu, Chaoliang Zeng, Zilong Wang, Junxue Zhang, Kun Guo, Hong Xu,
Jiawei Huang, and Kai Chen. 2024. Load Balancing With Multi-Level Signals
for Lossless Datacenter Networks. IEEE/ACM Transactions on Networking 32, 3
(2024), 2736–2748. https://doi.org/10.1109/TNET.2024.3366336

[48] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson
Huang, and Amin Vahdat. 2010. Hedera: Dynamic Flow Scheduling for Data
Center Networks. In Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation (NSDI’10). USENIX Association, USA, 19.
https://www.usenix.org/legacy/events/nsdi10/tech/full_papers/al-fares.pdf

[49] Andrew R Curtis, Wonho Kim, and Praveen Yalagandula. 2011. Mahout: Low-
overhead datacenter trafficmanagement using end-host-based elephant detection.
In 2011 Proceedings IEEE INFOCOM. IEEE, Shanghai, China, 1629–1637. https:
//doi.org/10.1109/INFCOM.2011.5934956

[50] Wei Wang, Yi Sun, Kai Zheng, Mohamed Ali Kaafar, Dan Li, and Zhongcheng
Li. 2014. Freeway: Adaptively Isolating the Elephant and Mice Flows on Differ-
ent Transmission Paths. In 2014 IEEE 22nd International Conference on Network
Protocols. IEEE, Raleigh, NC, USA, 362–367. https://doi.org/10.1109/ICNP.2014.59

[51] Xinglong Diao, Huaxi Gu, Wenting Wei, Guoyong Jiang, and Baochun Li. 2024.
Deep Reinforcement Learning Based Dynamic Flowlet Switching for DCN. IEEE
Transactions on Cloud Computing 12, 2 (2024), 580–593. https://doi.org/10.1109/
TCC.2024.3382132

[52] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans
Fugal. 2014. Fastpass: a centralized "zero-queue" datacenter network. In Proceed-
ings of the 2014 ACM Conference on SIGCOMM (SIGCOMM ’14). Association for
Computing Machinery, New York, NY, USA, 307–318. https://doi.org/10.1145/
2619239.2626309

[53] Yanshu Wang, Dan Li, Yuanwei Lu, Jianping Wu, Hua Shao, and Yutian Wang.
2022. Elixir: A High-performance and Low-cost Approach to Managing Hard-
ware/Software Hybrid Flow Tables Considering Flow Burstiness. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22). USENIX
Association, Renton, WA, 535–550. https://www.usenix.org/conference/nsdi22/
presentation/wang-yanshu

[54] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley.
2011. Design, Implementation and Evaluation of Congestion Control
for Multipath TCP. In 8th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 11). USENIX Association, Boston, MA, 1–
14. https://www.usenix.org/conference/nsdi11/design-implementation-and-
evaluation-congestion-control-multipath-tcp

[55] Abdul Kabbani, Balajee Vamanan, Jahangir Hasan, and Fabien Duchene. 2014.
FlowBender: Flow-level Adaptive Routing for Improved Latency and Throughput
in Datacenter Networks. In Proceedings of the 10th ACM International on Confer-
ence on emerging Networking Experiments and Technologies. ACM, New York, NY,
USA, 149–160. https://doi.org/10.1145/2674005.2674985

[56] Naga Katta, Aditi Ghag, Mukesh Hira, Isaac Keslassy, Aran Bergman, Changhoon
Kim, and Jennifer Rexford. 2017. Clove: Congestion-Aware Load Balancing at
the Virtual Edge. In Proceedings of the 13th International Conference on Emerging

Networking EXperiments and Technologies (CoNEXT ’17). Association for Comput-
ing Machinery, New York, NY, USA, 323–335. https://doi.org/10.1145/3143361.
3143401

[57] S Floyd and V Jacobson. 1993. Random early detection gateways for congestion
avoidance. IEEE/ACM Transactions on Networking 1, 4 (1993), 397–413. https:
//doi.org/10.1109/90.251892

[58] Jiawei Huang, Wenjun Lyu, Weihe Li, Jianxin Wang, and Tian He. 2021. Mit-
igating Packet Reordering for Random Packet Spraying in Data Center Net-
works. IEEE/ACM Transactions on Networking 29, 3 (2021), 1183–1196. https:
//doi.org/10.1109/TNET.2021.3056601

[59] Jinbin Hu, Jiawei Huang, Wenjun Lv, Yutao Zhou, Jianxin Wang, and Tian He.
2019. CAPS: Coding-Based Adaptive Packet Spraying to Reduce Flow Completion
Time in Data Center. IEEE/ACM Transactions on Networking 27, 6 (2019), 2338–
2353. https://doi.org/10.1109/TNET.2019.2945863

[60] Jiawei Huang, Shiqi Wang, Shuping Li, Shaojun Zou, Jinbin Hu, and Jianxin
Wang. 2021. HTPC: heterogeneous traffic-aware partition coding for random
packet spraying in data center networks. Journal of Cloud Computing 10, 1 (2021),
31. https://doi.org/10.1186/s13677-021-00248-4

[61] Tobias Flach, Nandita Dukkipati, Andreas Terzis, Barath Raghavan, Neal Card-
well, Yuchung Cheng, Ankur Jain, Shuai Hao, Ethan Katz-Bassett, and Ramesh
Govindan. 2013. Reducing Web Latency: the Virtue of Gentle Aggression. In
Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM. ACM, New
York, NY, USA, 159–170. https://doi.org/10.1145/2486001.2486014

[62] Nan Jiang, John Kim, andWilliam J Dally. 2009. Indirect adaptive routing on large
scale interconnection networks. In Proceedings of the 36th Annual International
Symposium on Computer Architecture (ISCA ’09). Association for Computing Ma-
chinery, New York, NY, USA, 220–231. https://doi.org/10.1145/1555754.1555783

[63] Yao Kang, Xin Wang, and Zhiling Lan. 2021. Q-adaptive: A Multi-Agent Re-
inforcement Learning Based Routing on Dragonfly Network. In Proceedings of
the 30th International Symposium on High-Performance Parallel and Distributed
Computing (HPDC ’21). Association for Computing Machinery, New York, NY,
USA, 189–200. https://doi.org/10.1145/3431379.3460650

[64] Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical Delay-Based Conges-
tion Control for the Internet. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18). USENIX Association, Renton, WA, 329–342.
https://www.usenix.org/conference/nsdi18/presentation/arun

[65] Gaoxiong Zeng, Wei Bai, Ge Chen, Kai Chen, Dongsu Han, Yibo Zhu, and Lei
Cui. 2022. Congestion Control for Cross-Datacenter Networks. IEEE/ACM
Transactions on Networking 30, 5 (2022), 2074–2089. https://doi.org/10.1109/
TNET.2022.3161580

[66] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan M. G. Wassel, Xian
Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld,
Michael Ryan, David Wetherall, and Amin Vahdat. 2020. Swift: Delay is Sim-
ple and Effective for Congestion Control in the Datacenter (SIGCOMM ’20).
Association for Computing Machinery, New York, NY, USA, 514–528. https:
//doi.org/10.1145/3387514.3406591

[67] Yanfang Le, Rong Pan, Peter Newman, Jeremias Blendin, Abdul Kabbani, Vipin
Jain, Raghava Sivaramu, and Francis Matus. 2024. STrack: A Reliable Multipath
Transport for AI/ML Clusters. arXiv:2407.15266 [cs.NI] https://arxiv.org/abs/
2407.15266

18

